

Accelerating Volkov’s Hybrid Implementation of Cholesky Factorization
on a Fermi GPU

Shih-Chieh Wei

Department of Information Management
Tamkang University

Tamsui, Taiwan 25137
seke@mail.im.tku.edu.tw

Bormin Huang
Space Science and Engineering Center

University of Wisconsin-Madison
Madison, WI 53706, USA

bormin@ssec.wisc.edu

Abstract—In linear algebra, Cholesky factorization is useful in
solving a system of equations with a symmetric positive definite
coefficient matrix. Cholesky factorization is roughly twice as
fast relative to LU factorization which applies to general
matrices. In recent years, with advances in technology, a Fermi
GPU card can accommodate hundreds of cores compared to
the small number of 8 or 16 cores on CPU. Therefore a trend is
seen to use the graphics card as a general purpose graphics
processing unit (GPGPU) for parallel computation. In this
work, Volkov’s hybrid implementation of Cholesky
factorization is evaluated on the new Fermi GPU with others
and then some improvement strategies were proposed. After
experiments, compared to the CPU version using Intel Math
Kernel Library (MKL), our proposed GPU improvement
strategy can achieve a speedup of 3.85x on Cholesky
factorization of a square matrix of dimension 10,000.

Keywords*- Cholesky factorization, general purpose graphics
processing unit, parallel computing

I. INTRODUCTION
 In linear algebra, to solve a system of linear equations,
LU factorization is often used on a general coefficient
matrix. When the coefficient matrix satisfies the condition
of a symmetric positive definite matrix, Cholesky
factorization can be used which is roughly twice as efficient
as LU factorization [1]. In linear least squares problem,
Cholesky factorization is useful in solving the normal
equation to minimize the sum of differences between the
two sides of the original fitting equation. Cholesky
factorization also finds other applications in non-linear
optimization, Monte Carlo simulation, and Kalman filters.

 In recent years graphics processing units (GPUs) with
hundreds of computing cores have become affordable for
scientific computation. Currently, an NVIDIA high-end
Tesla C2050 GPU card implementing the Fermi architecture
has 448 computing cores. It delivers a theoretical peak
performance of 1.03 TFLOPs in single precision. The
combined features of general-purpose supercomputing, high

*Send correspondence to: bormin@ssec.wisc.edu

parallelism, high memory bandwidth (144 GB/s), low cost,
and compact size make a GPU-based desktop computer an
appealing alternative to a massively parallel system made up
of commodity CPUs. Increasing programmability of
commodity GPUs allows their usage as General Purpose
computation on GPUs (GPGPUs), which have recently
attracted great attention for scientific applications [2][3].

 This work aims to find an implementation of Cholesky
factorization with high performance on the recent Fermi
GPU. First, several open source GPU-based Cholesky
factorization programs on the Internet were located,
analyzed, and evaluated. We found that Volkov’s
implementation [10] performs the best. Then several
strategies for performance improvement were proposed and
tested on Volkov’s implementation. Compared to the CPU
version using Intel Math Kernel Library (MKL) [4], our
proposed GPU improvement strategy on Volkov’s
implementation can achieve a speedup of 3.85x for
Cholesky factorization of a square matrix of dimension
10,000.

 The rest of this paper will be arranged as follows.
Section II describes Cholesky factorization, Volkov’s
hybrid implementation and our improvement strategies.
Section III shows the experimental results on these GPU
implementations. Section IV summarizes the paper.

II. THE CHOLESKY FACTORIZATION AND ITS GPU
IMPLEMENTATION

A. THE CHOLESKY FACTORIZATION
 In the following, we assume that all matrices contain
only real elements. Given a symmetric positive definite
matrix A, the Cholesky factorization can factorize a lower
triangular matrix L such that A=L LT. As an example, the
Cholesky factorization of a 4x4 matrix A can be expressed
as follows.

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.147

896

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.147

896

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.147

896

A=

��
�
�
�

�

�

��
�
�
�

�

�

44434241

43333231

42322221

41312111

AAAA
AAAA
AAAA
AAAA

=L LT=

��
�
�
�

�

�

��
�
�
�

�

�

��
�
�
�

�

�

��
�
�
�

�

�

44

4333

423222

41312111

44434241

333231

2221

11

000
00

0
0
00
000

L
LL
LLL
LLLL

LLLL
LLL

LL
L

=

��
�
�
�

�

�

��
�
�
�

�

�

++++++
+++++

+++

2
44

2
43

2
42

2
41334332423141224221411141

334332423141
2
33

2
32

2
31223221311131

2242214122322131
2
22

2
211121

114111311121
2
11

LLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLL

LLLLLLLLLLLL
LLLLLLL

(1)
 From the above, we can obtain the following formula for
the elements of L [1]. As L is lower triangular, only
elements below (i>j) and on the main diagonal (i=i) need to
be computed.

�
−

=

−=
1

1

2
,,,

i

k
kiiiii LAL , (2)

�
−

=

−=
1

1
,,,

,
,)(1 i

k
kjkiji

jj
ji LLA
L

L for i > j. (3)

 It can be seen that each element Li,j only depends on the
elements on the left and above. Therefore the elements can
be computed from left to right and top to bottom in columns
or rows. When the two dimensional matrices are stored in
column major order which is our case here, column-wise
computation is often used to exploit the local access pattern
in a cache.

B. GPU IMPLEMENTATION OF THE CHOLESKY
FACTORZATION

 Traditionally, LAPACK (Linear Algebra PACKage) is
the major source of library for doing various matrix
factorizations which include LU factorization on general
matrices and Cholesky factorization on symmetric positive
definite matrices. In LAPACK, POTRF (symmetric
POsitive definite matrix TRiangular Factorization) is the
function for Cholesky factorization. For POTRF, as the
input and output is a symmetric matrix, only the specified
upper or lower triangular matrix will be used. In the
following, we will assume that only the lower triangular
matrix is used. For CPU with multiple cores, the Intel Math
Kernel Library (MKL) has the state-of-the-art multithreaded
implementation of LAPACK. Therefore MKL POTRF is
often used as the baseline for comparison with other parallel
implementations using GPU.

 We have found several available GPU implementations
of Cholesky factorization from Internet. Among them,
CULA POTRF [7] is a commercial implementation without
source code. We will mainly use it for performance
comparison. For those implementations with source code,
we have evaluated the POTRF functions from Bouchaert [9],
Volkov [10] and MAGMA [8]. The result shows that
Volkov’s version performs the best. Therefore we will
analyze Volkov’s implementation below and propose some
strategies for further improvement.

 Figure 1. A matrix of 4x4 panels is used to illustrate Volkov’s hybrid
implementation of blocked Cholesky factorization on CPU and GPU.

897897897

 Volkov’s implementation is a right-looking variant of
blocked Cholesky factorization as adopted by LAPACK
[11]. For hybrid implementation using both CPU and GPU,
there are different ways of workload balancing in addition
to the panel factorization on CPU [12][13]. Fig. 1 illustrates
Volkov’s implementation using a sample matrix of 4x4
panels. Based on the hardware in use, Volkov fixed the
panel size to 64 x 64 elements. As input and output, the
given matrix is initially on CPU and copied to GPU for
computation when necessary. In Fig. 1, four stages (i=0~3)
are executed with each stage responsible for one panel
column (denoted in gray color) from left to right. Except the
first and the last stages where certain steps are skipped, all
interim stages will execute the following 7 steps.
(1) Compute B=B-A AT by the SYRK (SYmmetric Rank K

update) function on GPU.
(2) Compute D=D-C AT by the GEMM (GEneral Matrix

Multiplication) function on GPU.
(3) Copy B,D from GPU to CPU.
(4) Compute L=L-C C T by the SYRK function on GPU.
(5) Compute B=potrf(B) by the MKL POTRF function on

CPU.
(6) Compute D=trsm(B,D) by the MKL TRSM

(TRiangular Solve Multiple right hand sides) function
on CPU.

(7) Copy B,D from CPU to GPU.
 By considering the elements in eq.(1) as panels, it is easy
to see how each panel is computed following the steps of
stages in Fig. 1. The square root operation on an element
corresponds to the Cholesky factorization operation on a
panel. From Fig. 1, it can be seen that there is an overlap of
CPU and GPU computation in steps 4,5 and 6 of each
interim stage. If these two computations can take about the
same time without much waiting before the copy
synchronization, the compute power of both resources will
be best utilized. Note that the pinned memory technique has
been used in Volkov’s implementation for faster copy
process.

 Based on Volkov’s implementation, our improvement
strategies consist of three folds. First, while Volkov used the
MKL POTRF and MKL TRSM functions on CPU, he used
his own developed BLAS (Basic Linear Algebra
Subprogram) functions such as SYRK and GEMM on GPU.
As the CUDA environment upgrades its CUBLAS functions
[6], we found that using current CUBLAS SYRK and
CUBLAS GEMM is faster now. Second, in the hybrid
blocked version of Cholesky factorization, the size of the
panel will affect the compute speed of each panel column
and thus the balance of the CPU and GPU overlap in time.
Based on the hardware in use, Volkov fixed the panel size to

64 elements. Based on our C2050 hardware which has 448
cores, we tune the panel size up to 384 for faster speed.
Third, Volkov’s code assumes the initial matrix on CPU
which requires much memory copy for GPU computation.
We developed a version that assumes the initial matrix on
GPU. Only data needed for CPU computation has to be
copied to and fro. We have wrapped up the revised code in a
library form for easy use.

III.RESULT
 To evaluate the GPU accelerated performance of the
various implementations of Cholesky factorization, we run
the test on random matrices of sizes 1000 to 10000 in 1000
steps. To generate symmetric positive definite matrices, a
random zero-mean signal matrix X is first produced and
then its covariance matrix A which fulfils the symmetric
positive definite property is computed by A = X XT. For all
experiments, only results for single precision floating
numbers are reported.

TABLE I. SPECIFICATION OF THE NVIDIA TESLA C2050 GPU CARD.

Number of Streaming Processor Cores 448
Frequency of Processor Cores 1.15GHz
Total Dedicated Memory 3 GB GDDR5
Memory Speed 1.5 GHz
Memory Interface 384-bit
Memory Bandwidth 144 GB/sec

 Our implementation and testing are based on an
environment with a quad-core 2.4 GHz Intel Xeon E5620
CPU and an NVIDIA Tesla C2050 1.15 GHz GPU. With
the Intel Hyper-Threading Technology, a maximum of 8
threads are available for execution. The specification of the
NVIDIA Tesla C2050 GPU are shown in Table I. NVIDIA
Tesla C2050 consists of 14 multiprocessors. Each
multiprocessor has 32 thread processors. Each thread
processor inside a multiprocessor runs synchronously. Thus,
all 32 thread processors execute the same instruction at the
same time. Threads are organized into three level
hierarchies. The highest level is a grid, which consists of
thread blocks. A thread block is a three dimensional array of
threads. A current generation of NVIDIA’s GPUs group
threads in groups of 32 threads called warps. A
multiprocessor issues the same instruction to the all threads
in a warp. When threads take divergent paths multiple
passes are required to complete the warp execution.
Separate multiprocessors run asynchronously. Each Tesla
C2050 GPU has 3 GB device memory, whose access
bandwidth is higher than CPU’s access to DRAM memory.

898898898

 The test environment runs CentOS 5.7 with Kernel
2.6.18. For CUDA programming on GPU, CUDA Driver
4.0 [5] is used together with the CUDA-based linear algebra
library of CULA Dense Package R13a [7]. Intel Math
Kernel Library (MKL) 10.3.2.137 [4] is mainly used for full
Cholesky factorization as well as blocked Cholesky
factorization for the diagonal panels on CPU.

1

10

100

1000

10000

32 64 96 128 160 192 224 256 288 320 352 384 416 448

T
im

e
 (
m

s
)

Panel Size

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 2. The running time of Volkov’s implementation of Cholesky
factorization (POTRF) on Fermi GPU for panel sizes 32 to 448 in 32 steps

on a matrix of orders 1000 to 10000 in 1000 steps.

Fig. 2 shows our tuning process in finding a good panel
size for Cholesky factorization of matrices with different
orders. Considering the warp size of 32 in current GPU
scheduling, a panel size in multiples of 32 up to the
maximum 448 cores available in GPU is tested. It can be
seen that for a matrix order larger than 3000, a panel size of
384 can best exploit the GPU hardware.

Table II shows the running time of the various
implementations of Cholesky factorization which include
MKL, CULA, Volkov, Bouchaert, and MAGMA. Among
them only MKL runs purely on CPU. Others use GPU in
combination with CPU. When using CPU, as many as 8
threads may be used for parallel computation on our quad-
core test environment. Except MAGMA whose initial
matrix is on GPU, all other implementations assume initial

matrix on host and require transfer to GPU for computation.
The running time shown is the average of 100 runs.

To show the improvement in our modified
implementation, Volkov_N64 denotes the original Volkov
implementation with a panel size of 64 and no use of
CUBLAS functions; Volkov_N64_CU denotes the Volkov
implementation using CUBLAS function; Volkov_N384
denotes the Volkov implementation with a panel size of 384
and no use of CUBLAS; and Volkov_N384_CU denotes our
final modified Volkov implementation with a panel size of
384 and use of current CUBLAS functions. From Table II, it
can be seen that as the dimension of the square matrix
grows, the gain of using GPU over pure CPU increases.
Among those using GPU, our final modified version
Volkov_N384_CU runs the fastest, followed by original
Volkov, CULA, and Bouchaert in order.

TABLE II. THE RUNNING TIME (S) OF VARIOUS IMPLEMENTATIONS OF
CHOLESKY FACTORIZATION (POTRF) ON GPU AND THE MKL

IMPLEMENTATION ON CPU.

Time
(s) MKL CULA Volkov

N64

Volkov
N64
CU

Volkov
N384

Volkov
N384
CU

Bouchaert MAGMA

1000 0.004 0.011 0.006 0.006 0.005 0.005 0.020 0.008
2000 0.026 0.037 0.019 0.019 0.019 0.019 0.074 0.024
3000 0.075 0.081 0.045 0.045 0.040 0.039 0.161 0.056
4000 0.172 0.145 0.091 0.092 0.078 0.069 0.280 0.082
5000 0.330 0.247 0.164 0.164 0.136 0.113 0.436 0.185
6000 0.570 0.371 0.262 0.263 0.219 0.183 0.622 0.304
7000 0.890 0.540 0.404 0.403 0.335 0.274 0.842 0.465
8000 1.320 0.725 0.578 0.577 0.477 0.372 1.100 0.396
9000 1.860 0.982 0.810 0.810 0.670 0.526 1.446 0.952

10000 2.540 1.240 1.098 1.097 0.908 0.674 1.834 1.286

 Fig. 3 shows the speedup of the various implementations
of Cholesky factorization relative to MKL. A similar trend
can be seen that as the dimension of the matrix grows, the
speedup of all GPU-based implementations shows more
gains. However it can be found that at dimension 1000, all
GPU-based implementations are actually slower than MKL
on CPU. The benefit of using GPU shows only at dimension
2000 upwards for our modified version Volkov_N384_CU,
at dimension 3000 upwards for CULA and at dimension
7000 upwards for Bouchaert. From Fig. 3, there is
peculiarity of performance boost with MAGMA at
dimensions 4000 and 8000. This might be traced to the
particular MAGMA GEMM implementation on Fermi GPU.
Also, Volkov_N64_CU almost overlaps with original
Volkov_N64 while Volkov_N384_CU is much better than
Volkov_N384. This shows that CUBLAS works better with
large panel size instead of small ones. Among the GPU-
based implementations, our modified version

899899899

Volkov_N384_CU shows a speedup that scales up best with
dimensions.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Dimension of Symmetric Positive Definite Matrix

Speedup of various POTRF implementations v.s. MKL

MKL CULA Volkov_N64

Volkov_N64_CU Volkov_N384 Bouchaert

Magma Volkov_N384_CU

Figure 3. The speedup of various implementations of Choleksy

factorization (POTRF) on GPU relative to the state-of-the-art MKL
implementaiton on CPU.

IV. SUMMARY

Cholesky factorization is an important tool in solving
systems of equations with symmetric positive definite
coefficient matrices. With advances of technology, more
GPU-based implementations have shown up to accelerate
the factorization speed. In this work, we evaluated several
available GPU implementations of Cholesky factorization
on the recent Fermi GPU and found that Volkov’s hybrid
implementation using both CPU and GPU is the most
competitive one. Then we analyzed Volkov’s

implementation and proposed several improvement
strategies. The experiments show that our modified version
can achieve a speedup of 3.85x relative to the state-of-the-
art MKL implementation. As the speedup is related to the
specific hardware in use, these improvement strategies
might be applied to other platforms and even factorizations
for optimized performance on a specific environment.

REFERENCES

[1] G. H. Golub and C.F. Van Loan, Matrix Computations, John Hopkins
University Press, 1996.

[2] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Morgan Kaufmann Publishers,
2010.

[3] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming, Addison-Wesley, 2011.

[4] Intel, Intel Math Kernel Library Reference Manual, MKL 10.3, 2011.
[5] NVIDIA, NVIDIA Cuda Reference Manual, Version 4.0, 2012.
[6] NVIDIA, Cuda CUBLAS Library, Version 4.0, 2010.
[7] EM Photonics, Cula Reference Manual, Release R13, 2011.
[8] MAGMA, Matrix Algebra on GPU and Multicore Architectures

Software, available at http://icl.cs.utk.edu/magma /software/.
[9] R. R. Bouckaert, Matrix inverse with CUDA and Cublas, available at

http://www.cs.waikato.ac.nz/~remco/
[10] V. Volkov and J. W. Demmel, LU, QR and Cholesky factorizations

using vector capabilities of GPU, Technical Report No. UCB/EECS-
2008-49, University of California at Berkeley, 2008.

[11] J. Dongarra, I. S. Duff, D. C. Sorensen, H. A. van der Vorst,
Numerical Linear Algebra for High-Performance Computers, SIAM,
1998.

[12] M. Baboulin, J. Dongara, and S. Tomov, Some Issues in Dense
Linear Algebra for Multicore and Special Purpose Architectures,
Technical Report UT-CS-08-200, University of Tennessee, May 6,
2008.

[13] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S. Quintana-
Orti, Solving Dense Linear Systems on Graphics Processors,
Technical Report ICC 02-02-2008, Universidad Jaime I, February
2008.

900900900

