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Abstract—In linear algebra, Cholesky factorization is useful in 
solving a system of equations with a symmetric positive definite 
coefficient matrix. Cholesky factorization is roughly twice as 
fast relative to LU factorization which applies to general 
matrices. In recent years, with advances in technology, a Fermi 
GPU card can accommodate hundreds of cores compared to 
the small number of 8 or 16 cores on CPU. Therefore a trend is 
seen to use the graphics card as a general purpose graphics 
processing unit (GPGPU) for parallel computation. In this 
work, Volkov’s hybrid implementation of Cholesky 
factorization is evaluated on the new Fermi GPU with others 
and then some improvement strategies were proposed. After 
experiments, compared to the CPU version using Intel Math 
Kernel Library (MKL), our proposed GPU improvement 
strategy can achieve a speedup of 3.85x on Cholesky 
factorization of a square matrix of dimension 10,000. 

Keywords*- Cholesky factorization, general purpose graphics 
processing unit, parallel computing 

I. INTRODUCTION 
      In linear algebra, to solve a system of linear equations, 
LU factorization is often used on a general coefficient 
matrix. When the coefficient matrix satisfies the condition 
of a symmetric positive definite matrix, Cholesky 
factorization can be used which is roughly twice as efficient 
as LU factorization [1]. In linear least squares problem, 
Cholesky factorization is useful in solving the normal 
equation to minimize the sum of differences between the 
two sides of the original fitting equation. Cholesky 
factorization also finds other applications in non-linear 
optimization, Monte Carlo simulation, and Kalman filters.  

     In recent years graphics processing units (GPUs) with 
hundreds of computing cores have become affordable for 
scientific computation. Currently, an NVIDIA high-end 
Tesla C2050 GPU card implementing the Fermi architecture 
has 448 computing cores. It delivers a theoretical peak 
performance of 1.03 TFLOPs in single precision. The 
combined features of general-purpose supercomputing, high 
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parallelism, high memory bandwidth (144 GB/s), low cost, 
and compact size make a GPU-based desktop computer an 
appealing alternative to a massively parallel system made up 
of commodity CPUs. Increasing programmability of 
commodity GPUs allows their usage as General Purpose 
computation on GPUs (GPGPUs), which have recently 
attracted great attention for scientific applications [2][3].  

      This work aims to find an implementation of Cholesky 
factorization with high performance on the recent Fermi 
GPU. First, several open source GPU-based Cholesky 
factorization programs on the Internet were located, 
analyzed, and evaluated. We found that Volkov’s 
implementation [10] performs the best. Then several 
strategies for performance improvement were proposed and 
tested on Volkov’s implementation. Compared to the CPU 
version using Intel Math Kernel Library (MKL) [4], our 
proposed GPU improvement strategy on Volkov’s 
implementation can achieve a speedup of 3.85x for 
Cholesky factorization of a square matrix of dimension 
10,000.  

     The rest of this paper will be arranged as follows. 
Section II describes Cholesky factorization, Volkov’s 
hybrid implementation and our improvement strategies. 
Section III shows the experimental results on these GPU 
implementations. Section IV summarizes the paper.  

II. THE CHOLESKY FACTORIZATION AND ITS GPU 
IMPLEMENTATION 

A. THE CHOLESKY FACTORIZATION 
     In the following, we assume that all matrices contain 
only real elements. Given a symmetric positive definite 
matrix A, the Cholesky factorization can factorize a lower 
triangular matrix L such that A=L LT.  As an example, the 
Cholesky factorization of a 4x4 matrix A can be expressed 
as follows. 

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.147

896

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.147

896

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.147

896



 

 
 

 
 
 

 
 
 

A=

��
�
�
�

�

�

��
�
�
�

�

�

44434241

43333231

42322221

41312111

AAAA
AAAA
AAAA
AAAA

 

=L LT=

��
�
�
�

�

�

��
�
�
�

�

�

��
�
�
�

�

�

��
�
�
�

�

�

44

4333

423222

41312111

44434241

333231

2221

11

000
00

0
0
00
000

L
LL
LLL
LLLL

LLLL
LLL

LL
L

 

=

��
�
�
�

�

�

��
�
�
�

�

�

++++++
+++++

+++

2
44

2
43

2
42

2
41334332423141224221411141

334332423141
2
33

2
32

2
31223221311131

2242214122322131
2
22

2
211121

114111311121
2
11

LLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLL

LLLLLLLLLLLL
LLLLLLL  

(1) 
     From the above, we can obtain the following formula for 
the elements of L [1]. As L is lower triangular, only 
elements below (i>j) and on the main diagonal (i=i) need to 
be computed. 
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     It can be seen that each element Li,j only depends on the 
elements on the left and above. Therefore the elements can 
be computed from left to right and top to bottom in columns 
or rows. When the two dimensional matrices are stored in 
column major order which is our case here, column-wise 
computation is often used to exploit the local access pattern 
in a cache. 

B. GPU IMPLEMENTATION OF THE CHOLESKY 
FACTORZATION 

     Traditionally, LAPACK (Linear Algebra PACKage) is 
the major source of library for doing various matrix 
factorizations which include LU factorization on general 
matrices and Cholesky factorization on symmetric positive 
definite matrices. In LAPACK, POTRF (symmetric 
POsitive definite matrix TRiangular Factorization) is the 
function for Cholesky factorization. For POTRF, as the 
input and output is a symmetric matrix, only the specified 
upper or lower triangular matrix will be used. In the 
following, we will assume that only the lower triangular 
matrix is used. For CPU with multiple cores, the Intel Math 
Kernel Library (MKL) has the state-of-the-art multithreaded 
implementation of LAPACK. Therefore MKL POTRF is 
often used as the baseline for comparison with other parallel 
implementations using GPU. 

     We have found several available GPU implementations 
of Cholesky factorization from Internet. Among them, 
CULA POTRF [7] is a commercial implementation without 
source code. We will mainly use it for performance 
comparison. For those implementations with source code, 
we have evaluated the POTRF functions from Bouchaert [9], 
Volkov [10] and MAGMA [8]. The result shows that 
Volkov’s version performs the best. Therefore we will 
analyze Volkov’s implementation below and propose some 
strategies for further improvement. 

 Figure 1. A matrix of 4x4 panels is used to illustrate Volkov’s hybrid 
implementation of blocked Cholesky factorization on CPU and GPU. 
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     Volkov’s implementation is a right-looking variant of  
blocked Cholesky factorization as adopted by LAPACK 
[11]. For hybrid implementation using both CPU and GPU, 
there are different ways of workload balancing in addition 
to the panel factorization on CPU [12][13]. Fig. 1 illustrates 
Volkov’s implementation using a sample matrix of 4x4 
panels. Based on the hardware in use, Volkov fixed the 
panel size to 64 x 64 elements. As input and output, the 
given matrix is initially on CPU and copied to GPU for 
computation when necessary. In Fig. 1, four stages (i=0~3) 
are executed with each stage responsible for one panel 
column (denoted in gray color) from left to right. Except the 
first and the last stages where certain steps are skipped, all 
interim stages will execute the following 7 steps. 
(1) Compute B=B-A AT by the SYRK (SYmmetric Rank K 

update) function on GPU. 
(2) Compute D=D-C AT by the GEMM (GEneral Matrix 

Multiplication) function on GPU. 
(3) Copy B,D from GPU to CPU. 
(4) Compute L=L-C C T by the SYRK function on GPU. 
(5) Compute B=potrf(B) by the MKL POTRF function on 

CPU. 
(6) Compute D=trsm(B,D) by the MKL TRSM 

(TRiangular Solve Multiple right hand sides) function 
on CPU. 

(7) Copy B,D from CPU to GPU. 
     By considering the elements in eq.(1) as panels, it is easy 
to see how each panel is computed following the steps of 
stages in Fig. 1. The square root operation on an element 
corresponds to the Cholesky factorization operation on a 
panel. From Fig. 1, it can be seen that there is an overlap of 
CPU and GPU computation in steps 4,5 and 6 of each 
interim stage.  If these two computations can take about the 
same time without much waiting before the copy 
synchronization, the compute power of both resources will 
be best utilized. Note that the pinned memory technique has 
been used in Volkov’s implementation for faster copy 
process.  

     Based on Volkov’s implementation, our improvement 
strategies consist of three folds. First, while Volkov used the 
MKL POTRF and MKL TRSM functions on CPU, he used 
his own developed BLAS (Basic Linear Algebra 
Subprogram) functions such as SYRK and GEMM on GPU. 
As the CUDA environment upgrades its CUBLAS functions 
[6], we found that using current CUBLAS SYRK and 
CUBLAS GEMM is faster now. Second, in the hybrid 
blocked version of Cholesky factorization, the size of the 
panel will affect the compute speed of each panel column 
and thus the balance of the CPU and GPU overlap in time. 
Based on the hardware in use, Volkov fixed the panel size to 

64 elements. Based on our C2050 hardware which has 448 
cores, we tune the panel size up to 384 for faster speed. 
Third, Volkov’s code assumes the initial matrix on CPU 
which requires much memory copy for GPU computation. 
We developed a version that assumes the initial matrix on 
GPU. Only data needed for CPU computation has to be 
copied to and fro. We have wrapped up the revised code in a 
library form for easy use. 

III.RESULT 
     To evaluate the GPU accelerated performance of the 
various implementations of Cholesky factorization, we run 
the test on random matrices of sizes 1000 to 10000 in 1000 
steps. To generate symmetric positive definite matrices, a 
random zero-mean signal matrix X is first produced and 
then its covariance matrix A which fulfils the symmetric 
positive definite property is computed by A = X XT. For all 
experiments, only results for single precision floating 
numbers are reported. 

TABLE I. SPECIFICATION OF THE NVIDIA TESLA C2050 GPU CARD. 

Number of Streaming Processor Cores 448 
Frequency of Processor Cores 1.15GHz 
Total Dedicated Memory 3 GB GDDR5 
Memory Speed 1.5 GHz 
Memory Interface 384-bit 
Memory Bandwidth 144 GB/sec 

 
     Our implementation and testing are based on an 
environment with a quad-core 2.4 GHz Intel Xeon E5620 
CPU and an NVIDIA Tesla C2050 1.15 GHz GPU. With 
the Intel Hyper-Threading Technology, a maximum of 8 
threads are available for execution. The specification of the 
NVIDIA Tesla C2050 GPU are shown in Table I. NVIDIA 
Tesla C2050 consists of 14 multiprocessors. Each 
multiprocessor has 32 thread processors. Each thread 
processor inside a multiprocessor runs synchronously. Thus, 
all 32 thread processors execute the same instruction at the 
same time. Threads are organized into three level 
hierarchies. The highest level is a grid, which consists of 
thread blocks. A thread block is a three dimensional array of 
threads. A current generation of NVIDIA’s GPUs group 
threads in groups of 32 threads called warps. A 
multiprocessor issues the same instruction to the all threads 
in a warp. When threads take divergent paths multiple 
passes are required to complete the warp execution. 
Separate multiprocessors run asynchronously. Each Tesla 
C2050 GPU has 3 GB device memory, whose access 
bandwidth is higher than CPU’s access to DRAM memory.  

898898898



 

 
 

 
 
 

 
 
 

     The test environment runs CentOS 5.7 with Kernel 
2.6.18. For CUDA programming on GPU, CUDA Driver 
4.0 [5] is used together with the CUDA-based linear algebra 
library of CULA Dense Package R13a [7]. Intel Math 
Kernel Library (MKL) 10.3.2.137 [4] is mainly used for full 
Cholesky factorization as well as blocked Cholesky 
factorization for  the diagonal panels on CPU.  
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Figure 2. The running time of Volkov’s implementation of Cholesky 
factorization (POTRF) on Fermi GPU for panel sizes 32 to 448 in 32 steps 

on a matrix of orders 1000 to 10000 in 1000 steps. 

Fig. 2 shows our tuning process in finding a good panel 
size for Cholesky factorization of matrices with different 
orders. Considering the warp size of 32 in current GPU 
scheduling, a panel size in multiples of 32 up to the 
maximum 448 cores available in  GPU is tested. It can be 
seen that for a matrix order larger than 3000, a panel size of 
384 can best exploit the GPU hardware.  

Table II shows the running time of the various 
implementations of Cholesky factorization which include 
MKL, CULA, Volkov, Bouchaert, and MAGMA. Among 
them only MKL runs purely on CPU. Others use GPU in 
combination with CPU. When using CPU, as many as 8 
threads may be used for parallel computation on our quad-
core test environment. Except MAGMA whose initial 
matrix is on GPU, all other implementations assume initial 

matrix on host and require transfer to GPU for computation. 
The running time shown is the average of 100 runs. 

To show the improvement in our modified 
implementation, Volkov_N64 denotes the original Volkov 
implementation with a panel size of 64 and no use of 
CUBLAS functions; Volkov_N64_CU denotes the Volkov 
implementation using CUBLAS function; Volkov_N384 
denotes the Volkov implementation with a panel size of 384 
and no use of CUBLAS; and Volkov_N384_CU denotes our 
final modified Volkov implementation with a panel size of 
384 and use of current CUBLAS functions. From Table II, it 
can be seen that as the dimension of the square matrix 
grows, the gain of using GPU over pure CPU increases. 
Among those using GPU, our final modified version 
Volkov_N384_CU runs the fastest, followed by original 
Volkov, CULA, and Bouchaert in order.  

TABLE II. THE RUNNING TIME (S) OF VARIOUS IMPLEMENTATIONS OF 
CHOLESKY FACTORIZATION (POTRF) ON GPU AND THE MKL 

IMPLEMENTATION ON CPU. 

Time 
(s) MKL CULA Volkov

N64 

Volkov 
N64 
CU 

Volkov 
N384 

Volkov
N384 
CU 

Bouchaert MAGMA

1000 0.004 0.011 0.006 0.006 0.005 0.005 0.020 0.008 
2000 0.026 0.037 0.019 0.019 0.019 0.019 0.074 0.024 
3000 0.075 0.081 0.045 0.045 0.040 0.039 0.161 0.056 
4000 0.172 0.145 0.091 0.092 0.078 0.069 0.280 0.082 
5000 0.330 0.247 0.164 0.164 0.136 0.113 0.436 0.185 
6000 0.570 0.371 0.262 0.263 0.219 0.183 0.622 0.304 
7000 0.890 0.540 0.404 0.403 0.335 0.274 0.842 0.465 
8000 1.320 0.725 0.578 0.577 0.477 0.372 1.100 0.396 
9000 1.860 0.982 0.810 0.810 0.670 0.526 1.446 0.952 

10000 2.540 1.240 1.098 1.097 0.908 0.674 1.834 1.286 
 
     Fig. 3 shows the speedup of the various implementations 
of Cholesky factorization relative to MKL. A similar trend 
can be seen that as the dimension of the matrix grows, the 
speedup of all GPU-based implementations shows more 
gains. However it can be found that at dimension 1000, all 
GPU-based implementations are actually slower than MKL 
on CPU. The benefit of using GPU shows only at dimension 
2000 upwards for our modified version Volkov_N384_CU, 
at dimension 3000 upwards for CULA and at dimension 
7000 upwards for Bouchaert. From Fig. 3, there is 
peculiarity of performance boost with MAGMA at 
dimensions 4000 and 8000. This might be traced to the 
particular MAGMA GEMM implementation on Fermi GPU. 
Also, Volkov_N64_CU almost overlaps with original 
Volkov_N64 while Volkov_N384_CU is much better than 
Volkov_N384. This shows that CUBLAS works better with 
large panel size instead of small ones. Among the GPU-
based implementations, our modified version 
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Volkov_N384_CU shows a speedup that scales up best with 
dimensions. 
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Figure 3. The speedup of various implementations of Choleksy 

factorization (POTRF) on GPU relative to the state-of-the-art MKL 
implementaiton on CPU.  

IV. SUMMARY 

Cholesky factorization is an important tool in solving 
systems of equations with symmetric positive definite 
coefficient matrices. With advances of technology, more 
GPU-based implementations have shown up to accelerate 
the factorization speed. In this work, we evaluated several 
available GPU implementations of Cholesky factorization 
on the recent Fermi GPU and found that Volkov’s hybrid 
implementation using both CPU and GPU is the most 
competitive one. Then we analyzed Volkov’s 

implementation and proposed several improvement 
strategies. The experiments show that our modified version 
can achieve a speedup of 3.85x relative to the state-of-the-
art MKL implementation. As the speedup is related to the 
specific hardware in use, these improvement strategies 
might be applied to other platforms and even factorizations 
for optimized performance on a specific environment. 
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